Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Environ Microbiol ; 25(11): 2564-2579, 2023 11.
Article in English | MEDLINE | ID: mdl-37622480

ABSTRACT

The type VI secretion system (T6SS) is a contractile nanomachine widespread in Gram-negative bacteria. The T6SS injects effectors into target cells including eukaryotic hosts and competitor microbial cells and thus participates in pathogenesis and intermicrobial competition. Pseudomonas fluorescens MFE01 possesses a single T6SS gene cluster that confers biocontrol properties by protecting potato tubers against the phytopathogen Pectobacterium atrosepticum (Pca). Here, we demonstrate that a functional T6SS is essential to protect potato tuber by reducing the pectobacteria population. Fluorescence microscopy experiments showed that MFE01 displays an aggressive behaviour with an offensive T6SS characterized by continuous and intense T6SS firing activity. Interestingly, we observed that T6SS firing is correlated with rounding of Pectobacterium cells, suggesting delivery of a potent cell wall targeting effector. Mutagenesis coupled with functional assays then revealed that a putative T6SS secreted amidase, Tae3Pf , is mainly responsible for MFE01 toxicity towards Pca. Further studies finally demonstrated that Tae3Pf is toxic when produced in the periplasm, and that its toxicity is counteracted by the Tai3Pf inner membrane immunity protein.


Subject(s)
Pectobacterium , Pseudomonas fluorescens , Solanum tuberosum , Type VI Secretion Systems , Pseudomonas fluorescens/genetics , Pseudomonas fluorescens/metabolism , Type VI Secretion Systems/genetics , Type VI Secretion Systems/metabolism , Mutagenesis , Pectobacterium/genetics , Pectobacterium/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
2.
Can J Microbiol ; 66(7): 447-454, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32091915

ABSTRACT

The geocaulosphere is home to microbes that establish communication between themselves and others that disrupt them. These cell-to-cell communication systems are based on the synthesis and perception of signaling molecules, of which the best known belong to the N-acyl-homoserine lactone (AHL) family. Among indigenous bacteria, certain Gram-positive actinobacteria can sense AHLs produced by soft-rot Gram-negative phytopathogens and can degrade the quorum-sensing AHL signals to impair the expression of virulence factors. We mimicked this interaction by introducing dual-color reporter strains suitable for monitoring both the location of the cells and their quorum-sensing and -quenching activities, in potato tubers. The exchange of AHL signals within the pathogen's cell quorum was clearly detected by the presence of bright green fluorescence instead of blue in a portion of Pectobacterium-tagged cells. This phenomenon in Rhodococcus cells was accompanied by a change from red fluorescence to orange, showing that the disappearance of signaling molecules is due to rhodococcal AHL degradation rather than the inhibition of AHL production. Rhodococci are victorious in this fight for the control of AHL-based communication, as their jamming activity is powerful enough to prevent the onset of disease symptoms.


Subject(s)
Quorum Sensing/physiology , Acyl-Butyrolactones/metabolism , Pest Control, Biological , Plant Diseases/microbiology , Plant Diseases/prevention & control , Rhodococcus/genetics , Rhodococcus/metabolism , Rhodococcus/physiology , Solanum tuberosum/microbiology , Virulence Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL